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Abstract
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1 Introduction

Introductory courses in probability and statistics include joint distribution and calculation of

bivariate expectation. Over several years of teaching experience, the difficulty of calculating

complex integrals is observed for most students. When an expectation of a function of bivariate

normal distribution (X,Y ), such as E
(
|XY |

)
, is calculated, it is difficult and the students are

not confident of the result and consequently discouraging. From a pedagogical point of view, it

is important to help students to use another way for calculating such an expectation instead of

direct integration. In this work, we propose three different methods to calculate expectations

of joint random variables using an interesting example. The first method is direct one, i.e.

calculating analytically. This is a more difficult way for undergraduate students and a lot of

mistakes may occur. In some cases, analytic solutions may not exist, they may be very difficult,

or they cannot be calculated by computer algebra softwares. The second method is numerical

calculation. When analytic solutions fail, a numerical method to approximate integrals may be

used. Implementation of numerical methods are not easy for statistics students and computer

numerical softwares are usually used by them. However, the third method, using simulation,

is much simpler than the two previous ones. In this case, simulating realizations of a bivariate

normal distribution, (xi, yi), i = 1, . . . , n, and approximate E(|XY |) by
∑n

i=1 |xiyi|/n with the

aid of the weak law of large number is proposed.

In the next three sections, expected absolute value of a bivariate normal distribution are

calculated, analytically, numerically, and through simulation, respectively.

2 Analytical method

Let (X,Y ) be jointly distributed according to the bivariate normal distribution. Without loss of

generality, it is assumed that E(X) = E(Y ) = 0. Considering that, V ar(X) = σ2, V ar(Y ) = γ2,

and Corr(X,Y ) = ρ, then probability density function (PDF) of (X,Y ) has the following form.

fX,Y (x, y) =
1

2πσγ
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(x2
σ2

+
y2

γ2
− 2ρ

xy

σγ

)}
, (1)

for all x, y ∈ R, σ, γ ∈ R+, and ρ ∈ [−1, 1]. This PDF can be reconstructed in another way.

Let Z1, Z2, Z3 be independent standard normal random variables. It can be shown that PDF
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of (X,Y ) and that of (
σ(
√

1− ρZ1 −
√
ρZ3), γ(

√
1− ρZ2 −

√
ρZ3)

)
,

are equal for ρ ∈ [0, 1]. Now, (E|XY |) can be calculated by one of the following three ways:

∫ ∞
−∞

∫ ∞
−∞
|xy|fX,Y (x, y) dx dy (2)∫ ∞

−∞

∫ ∞
−∞

∫ ∞
−∞
|σ(
√

1− ρz1−
√
ρz3) γ(

√
1− ρz2−

√
ρz3)| fZ1(z1)fZ2(z2)fZ3(z3) dz1 dz2 dz3 (3)∫ ∞

0

∫ ∞
0

xyf|X|,|Y |(x, y) dx dy (4)

Integral in (2) is calculated by Nabeya (1951). Triplet integral in (3) seems simpler than (2)

by the independence of Zis, however it cannot be calculated analytically by a computer algebra

software. Also we can obtain the absolute moments of a bivariate normal distribution using

bivariate density of the absolute normal distribution, i.e. (4).

The rest of this section deals with calculating (4). The cumulative distribution function of

(|X|, |Y |) is given by

F|X|,|Y |(x, y) = FX,Y (x, y)− FX,Y (x,−y)− FX,Y (−x, y) + FX,Y (−x,−y), (5)

where FX,Y denotes the cumulative distribution function of (X,Y ). The PDF of (|X|, |Y |) can

be obtained by the mixed partial derivatives of (5) with respect to x and y as

f|X|,|Y |(x, y) = fX,Y (x, y) + fX,Y (x,−y) + fX,Y (−x, y) + fX,Y (−x,−y). (6)

By substituting (1) into (6) and after simplification, we arrive at PDF (|X|, |Y |),

f|X|,|Y |(x, y) =
2

πσγ
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(
x2

σ2
+
y2

γ2

)}
cosh

( ρxy

(1− ρ2)σγ

)
, (7)

for all x, y ∈ R+. This result is a little different than Abdel-Hameed and Sampson (1978)

expression. One can show that the appeared equation in Abdel-Hameed and Sampson (1978) p.

1363 and Tong (1990) p. 100, are not PDF’s and cannot be corrected by a constant multiplier,

but it may be modified by multiplier
√

(4− ρ2)/(1− ρ2)/2.

In calculating E(|XY |), the PDF of an absolute bivariate normal random vector can be used

as follows:
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E(|XY |) =

∫ ∞
0

∫ ∞
0

2xy

πσγ
√

1− ρ2
exp

{
− 1

2(1− ρ2)

(
x2

σ2
+
y2

γ2

)}
× cosh

( ρxy

(1− ρ2)σγ

)
dx dy

=
σγ

π

∫ π/2

0

∫ ∞
0

(
1− ρ2

) 3
2

u

(ρ sin 2θ − 1)2

(
exp{u}

+ exp{−ρ sin 2θ + 1

ρ sin 2θ − 1
u}
)
du dθ (8)

=
σγ

π

(
1− ρ2

) 3
2

∫ π/2

0

{ sin 2θ

(ρ sin 2θ − 1)2
+

sin 2θ

(ρ sin 2θ + 1)2

}
dθ

=
σγ

π

(
1− ρ2

) 3
2
d

dρ

∫ π/2

0

{ 1

1− ρ sin 2θ
− 1

1 + ρ sin 2θ

}
dθ (9)

=
σγ

π

(
1− ρ2

) 3
2
d

dρ

{ 2√
1− ρ2

arcsin ρ
}

=
2σγ

π

(
ρ arcsin ρ+

√
1− ρ2

)
, (10)

where (8) is obtained with polar coordinate and an appropriate change of variable and (9) can

be solved using relations (1.624) and (2.551) in Gradshteyn and Ryzhik (2007) pages 57 and

171, respectively. This integral can also be calculated by a computer algebra software such as

Mathematica with the following commands:

Integrate[2 ∗ x ∗ y/(Pi ∗ σ ∗ γ ∗ Sqrt[1− ρ2]) ∗Cosh[ρ ∗ x ∗ y/((1− ρ2) ∗ σ ∗ γ)]∗

Exp[(x2/σ2 + y2/γ2)/(−2 + 2 ∗ ρ2)], {x,0, Infinity}, {y,0, Infinity},

Assumptions− > {−1 < ρ < 1,σ > 0,γ > 0}]

The reader can refer to Wellin et al. (2005) for more information about Mathematica com-

mands.

3 Numerical method

When a problem cannot be solved analytically, numerical methods are employed. Numerical

integration is the numerical approximation of the integral of a function. For a function of two

variables it is equivalent to finding an approximation to the volume under the surface. For

example, integral (3) can be solved by Mathematica (for fixed parameters) by NIntegrate



Bivariate Normal Distribution 375

command. However, there are several popular software with numerical calculating ability, such

as MATLAB, S-PLUS or R. The open source software, R is used in this study. For more details

about R, the readers are referred to Everitt (2005).

In the following, R functions for calculating (2) and (4) will be introduced, respectively.

The first function, f1, supposes that (X,Y ) has a bivariate normal distribution with a mean 0,

standard deviations g and s, and correlation r.

> f1=function(g,s,r){

+ integrate(function(y) {

+ sapply(y,function(y) {

+ integrate(function(x) {

+ sapply(x,function(x) abs(x*y)*exp(-((x/g)^2+(y/s)^2-2*r*x*y/(s*g))

+ /(2*(1-r^2)))/(2*g*s*pi*sqrt(1-r^2)))

+ }, -Inf, Inf)$value })

+ }, -Inf, Inf)}

> f1(1,1,0.5)

0.7179956 with absolute error < 1.0e-07

> f1(2,2,0.5)

2.871980 with absolute error < 3e-05

The second function, f2, supposes that (X,Y ) has an absolute bivariate normal distribution.

It has the same structure as f1 with the following integrand over [0,∞)× [0,∞).

x*y*(exp(-((x/g)^2+(y/s)^2)/(2*(1-r^2))+r*(x/g)*(y/s)/(1-r^2))+exp(-((x

/g)^2+(y/s)^2)/(2*(1-r^2))-(x/g)*(y/s)*r/(1-r^2)))/(pi*g*s*sqrt(1-r^2)))

> f2(1,1,0.5)

0.7179956 with absolute error < 9e-08

> f2(2,2,0.5)

2.871982 with absolute error < 2.9e-06

The results of this function are approximately equal to the results of f1, and its exact value in

(10).
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4 Simulation method

An alternative method to find E(|XY |) can be simulation. Let (Xi, Yi), i = 1, . . . , n be a

random sample of size n from a bivariate normal distribution. It is well known that, by the

weak law of large number

1

n

n∑
i=1

|XiYi| −→ E(|XY |),

in probability. Therefore, to calculate an approximation of E(|XY |), realizations of the bivari-

ate normal distribution are simulated and its sample mean absolute value is calculated. Here is

an example of R code. A sample of observations having a size of 106, from the desired bivari-

ate normal distribution are simulated, e.g., with means 0, variances 1, and correlation 0.5 and

sample mean absolute value is calculated as follows:

> library(MASS) # loading package

> xy=mvrnorm(1000000,c(0,0),matrix(c(1,0.5,0.5,1),2))

# simulate bivariate normal observations

> mean(abs(xy[, 1]*xy[, 2])) # calculate sample mean absolute value

0.717534

The exact value, using (10), where ρ = 0.5 and σ = γ = 1, is equal to 0.7179956 which shows

that simulation can be applied as well.
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